LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – PHYSICS FIRST SEMESTER – APRIL 2010

PH 1502/PH 1501 - PROPERTIES OF MATTER & ACOUSTICS

Date & Time: 28/04/2010 / 9:00 - 12:00	Dept. No.	Max. : 100 Marks
--	-----------	------------------

PART - A

Answer ALL Questions

(10x2=20 marks)

- 1. What are the theoretical limits to the value of Poisson's ratio?
- 2. Calculate the work done in twisting a wire.
- 3. Define critical velocity.
- 4. State Newton's law of viscous flow.
- 5. What is surface energy & how is it related to surface tension?
- 6. Define surface tension and angle of contact.
- 7. Give the differential equation of a plane progressive wave which travels with a velocity 'v'.
- 8. What are beats?
- 9. What is Piezo-electric effect?
- 10. Name the principle used by the bats to navigate their flight.

PART-B

Answer any FOUR Questions

(4x7.5=30 marks)

- 11. Derive an expression for bending moment.
- 12. Discuss the working of Mcleod gauge.
- 13. Describe Quincke's method of finding surface tension. Derive the formula employed.
- 14. Obtain an expression for velocity of transverse wave along a stretched string.
- 15. a) Describe magnetostriction method to produce ultrasonic waves.
 - b) Write down the important applications of ultrasonic waves in industry and medicine.

PART-C

Answer any FOUR Questions

(4x12.5=50 marks)

- 16. a) Explain Koenig's method to determine the young's modulus of the material of a beam.
 - b) A bar of 0.006 meter in radius is supported on two knife edges 1 m apart. A load of 1 Kg at the centre of the bar depresses that point by 2mm. Calculate the young's modulus of the material of the bar.

(P.T.O.)

- 17. a) Describe, with theory, Stoke's method of determining the viscosity of a highly viscous fluid.
 - b) Castor oil at 20° C has a coefficient of viscosity 2.42 Nsm^{-2} and density 940 kg m^{-3} Calculate the terminal velocity of a steel ball of radius $2x10^{-3}$ m falling under gravity in the oil. Density of steel ball is 7800 kgm^{-3}
- 18. a) Obtain the expression for the excess of pressure inside (i) a spherical soap bubble and (ii) a spherical drop.
 - b) Calculate the work done in spraying a spherical drop of water of 10^{-3} m radius in to million droplets, all of the same size. The surface tension of water is 72×10^{-3} Nm⁻¹.
- 19. (a) Explain Doppler Effect.
 - (b) Derive an expression for the change in frequency of a note when
 - (i) Observer is at rest and source in motion
 - (ii) Observer is in motion and source is at rest
 - (iii) Observer and source in motion.
- 20. What is meant by reverberation? Define reverberation time. Derive Sabine's formula to determine reverberation time in an auditorium.

\$\$\$\$\$\$\$\$